Continuity of optimal transport maps and convexity of injectivity domains on small deformations of S

نویسندگان

  • A. Figalli
  • L. Rifford
چکیده

Given a compact Riemannian manifold, we study the regularity of the optimal transport map between two probability measures with cost given by the squared Riemannian distance. Our strategy is to define a new form of the so-called Ma-Trudinger-Wang condition and to show that this condition, together with the strict convexity on the nonfocal domains, implies the continuity of the optimal transport map. Moreover our new condition, again combined with the strict convexity of the nonfocal domains, allows to prove that all injectivity domains are strictly convex too. These results apply for instance on any small C-deformation of the two-sphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of optimal transport maps on multiple products of spheres

This article addresses regularity of optimal transport maps for cost=“squared distance” on Riemannian manifolds that are products of arbitrarily many round spheres with arbitrary sizes and dimensions. Such manifolds are known to be non-negatively cross-curved [KM2]. Under boundedness and non-vanishing assumptions on the transfered source and target densities we show that optimal maps stay away ...

متن کامل

Continuity and Injectivity of Optimal Maps

Figalli–Kim–McCann proved in [14] the continuity and injectivity of optimal maps under the assumption (B3) of nonnegative cross-curvature. In the recent [15, 16], they extend their results to the assumption (A3w) of Trudinger-Wang [34], and they prove, moreover, the Hölder continuity of these maps. We give here an alternative and independent proof of the extension to (A3w) of the continuity and...

متن کامل

Hölder continuity of solution maps to a parametric weak vector equilibrium problem

In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.

متن کامل

Continuity and injectivity of optimal maps for non-negatively cross-curved costs∗

Consider transportation of one distribution of mass onto another, chosen to optimize the total expected cost, where cost per unit mass transported from x to y is given by a smooth function c(x, y). If the source density f(x) is bounded away from zero and infinity in an open region U ′ ⊂ R, and the target density f−(y) is bounded away from zero and infinity on its support V ⊂ R, which is strongl...

متن کامل

On the Convexity of Injectivity Domains on Nonfocal Manifolds

Given a smooth nonfocal compact Riemannian manifold, we show that the so-called Ma–Trudinger–Wang condition implies the convexity of injectivity domains. This improves a previous result by Loeper and Villani.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009